If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+23x-720=0
a = 3; b = 23; c = -720;
Δ = b2-4ac
Δ = 232-4·3·(-720)
Δ = 9169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-\sqrt{9169}}{2*3}=\frac{-23-\sqrt{9169}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+\sqrt{9169}}{2*3}=\frac{-23+\sqrt{9169}}{6} $
| z^2/6-z/2-84=0 | | x^2-x=x(5+x) | | -13-3r=r+3 | | -2=x^2-8 | | 4x^2+14x-728=0 | | 5x-(3x+6-20+8x+6)=20 | | 4×+5=12x | | 10x^2+5x-15=30 | | 9x^2+9x-720=0 | | 1/8=17/20÷x | | 10x^2+5x=45 | | −3x2−5x−8=0 | | x-4)(x-18)=x(x-14) | | 5/5x+4=5/34 | | b/5-7=11 | | 5x+9=2x-188 | | g=54g= | | 10+y+12(5)-10=180 | | (2+y)/4(2+)=(-2+1/y) | | 12x-10=3x+35 | | 0.8=y/5.2 | | 7x-7=14,x= | | 19d+8=-5d+80 | | 4x=13=5x-12 | | 9x-17x=33 | | 6/4=x/14 | | H=-16^2t+28t+60 | | H=-16^2+28t+60 | | x+x/6=245 | | 5n^2-18n-35=0 | | 1.5x=2.6 | | 49n^2-30=7n |